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An approximate method for analysing diffusion processes in a natural mechanical system when there are 

perturbing forces similar to normal white noise is proposed. It is based on orthogonal expansions of the 

one-dimensional probability density of the state vector in a suitable Hilbert space of functions which are 

square-integrable with respect to a certain measure in the phase space (manifold) of the system. The 

method consists of solving a special system of linear ordinary differential equations for the expansion 

coefficients, and is suitable for computer implementation. The method is rigorously proved. The motion of 

a two-dimensional mathematical pendulum in a random medium is investigated as an example. 

1. FORMULATION OF THE PROBLEM 

CONSIDER a natural mechanical system subject to time-independent geometrical constraints. Let Q 
be a (smooth) configurational manifold of positions, of dimension IZ, and q = [ql, . . . , qnlr are local 
coordinates on Q. We will assume that the system is subject to the action of conservative forces with 
potential energy II(q), dissipative forces which are derivatives of the Rayleigh function q’*D (q) q’/Z, 
and also random forces, represented by a random vector F = b(q) V(t), where V(t) = [VI. . . Vl]’ is 
a vector of normally distributed white noise with constant intensity matrix v (of dimensions I x I), 

b(q) a certain mat~x-valued function of dimensions tz x 1. 

We will write the equations of motion of the system in Hamiltonian form 

q = aHlap, p. = -a&‘aq - D*(qlp + b(qM)> q@o) = qa, P@o)= PO (1.1) 
H = pt a(q)p/2 + II(q), D” = DG! 

where H is the Hamiltonian and s1 is some positive matrix. 
We will further assume that all the deterministic functions D(q), C!(q), b(q), II(q) are sufficiently 

smooth. 
Equations (1.1) are Ito stochastic differential equations in the manifold X = T*Q (the phase 

space of the system) [l, 21. They define a diffusion process controlled by a second-order operator 
which is parabolic in the wide sense 

a% a G=___ 
ap aq 

$ + p’D’>t + + t+t $)I, o=bvb’ 

The one-dimensional probability density f(x, t) of the process x(t) = [q( t)‘p(t)‘]’ relative to a 
phase volume element dpO = dql . . . dq,dp, . . . dp,, satisfies the Fokker-Planck-Kolmogorov equa- 
tion aflat = G *F, where G” is the adjoint of the infinitesimal operator G of the process x(t). 
Written in full, this equation is 
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It is not possible to solve Eq. (1.2) exactly in all generality. We therefore set ourselves the task ot 
finding an approximation to the one-dimensi~~nal distribution of the state vector. 

There is a considerably amount of literature on approximate methods for analysing stochastic differential 
systems (SDS) (for a survey, see, for example 131). Most of these methods, however, are based on biortho~o~a~ 
expansions of the density f with a weight function that depends on unknown parameters (the moments of the 
process), SO that they are difficult to justify in the rigorous sense and to extend to diffusion in manifolds. in 
addition, authors who have considered orthogonal expansions offhave generally confined their attention to the 
case X = R” and assumed that the right-hand sides of the equations are polynomials. A common weakness ot 
these methods is the lack of a rigorous justification. 

Another efficient approach to the analysis of SDS is the method of averaging (see [4] for its application to 
some problems of mechanics). Here, however. one must limit oneself to situations in which the slow motion IS 
one-dimensional. 

Some qualitative conclusions as to the behaviour of the system may be derived from the following theorem of 
Khas’minskii [S]: if a compact set KC X and a function U(x) 20 exist such that CU(x) d - L for xE K, then a 
steady-state solution exists. This solution is unique and ergodic, i.e. it is the (weak) limit of any initial 
distribution (see also 161). For example, if Q is compact and the dissipation is complete. the assumptions ot 
Khas’minskii’s theorem are satisfied. The role of U(x) may be assigned to the Hamiltonian H. 

The method proposed below is based on orthogonal expansions of the densityfand enables one, by solving a 
certain system of linear ordinary differential equations of order N, to find approximate expressions for the 
one-dimensional density f and for some moment characteristics of x(t). Conditions will be indicated under 
which the approximation error (in the sense of the metric of a certain Hilbert space) will tend to zero as N-4 x 
The method is suitable for computer implementation. 

2. METHOD OF INVESTIGATION 

Let Lz(X, p) be the standard Hilbett space of functions s(x) on X with measure 

ILL(& = ~1 (x)~~~~) and norm /IS// = UX/ Kx) /z441’2. with some orthonormal basis {ej(x) f 17). The 
index j may be either a vector (in which case j is actually a multi-index varying in some set) or a 
scalar (then i = 0, 1, 2, . , .). Clearly, as the basis is denumerable, vector indices may always be 
replaced by scalars and vice versa. In this section we shall use the scalar notation. 

Let us assume regarding the unknown density that f(x, r)lpi (x) E &(X, p). If system (1,l) is 
smooth, this may always be assured by a suitable shoice of the measure p. Then a unique series 
I;lcjci(x) exists that converges in the metric of L,(X, P) (i.e. in mean square) to f(x, t)lwi (x). 
,flp, - C;Cje,, where the coefficients ci are given by Fourier’s formulae 

Qt) =X_f f(x, t)ei(x)dfio =M+(x) (2. I) 

(M is the expectation operator). The coefficients cj(t) satisfy the foiIowing d~numerably infinite 
system of linear ordinary differential equations 

c; = (Mei)’ = Me; = MGq (2.2) 

Let us assume that Ge, E L2 (A’, p); then Gej may also be expanded in a convergent series 

Gei - ZCaiiei 
i 

(Qii = LqGeidp = const) 

and system (2.2) becomes 

Ci = z1 Ciaji, qfto) = S f&)qWdk, (3.3) 
t x 

This system is linear but not homog~neo~ls, since f must satisfy a normalizing condition, Most 
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frequently, the first of the coefficients cj is simply equal to a known constant (we shall indeed assume 
that this is the case here). 

It is generally impossible to find an exact solution of the general equation (2.3). We can therefore 
confine our attention to the expansion coefficients cj up to and including some order N (the other 
coefficients are assumed to vanish) 

N 
Cj*’ = x cfaji (j= 1,. . . ,N) (2.4) 

i= 0 

Solving this system with suitable initial conditions, we obtain an approximate value of the 
one-dimensional density 

f’(x, 0 = &(x) i H, C~(Oej(x) 

A singular point of system (2.4) represents a steady-state solution. 

3. JUSTIFICATION OF THE METHOD 

To justify the method we must estimate the distance between c;(t) and cj(t), and betweenf(x, t) 
and f*(x, t), as a function of the order N of the approximation. 

Let us consider the first N exact equations (2.3) for cj 0’ = 1, . . . , N) and compare them with the 
approximations (2.4) (the initial conditions match). For each i, the exact equation differs from its 
approximation by the quantity ai = Ci>Nci(t)Uji . Let US assume that the series Cjcj (t) ej(x) 
converges to f/p, (in the L2(X, p)-norm) uniformly in t. Then, since 

2 

5 c;= f , 
i= 0 II II Pl 

iz,aTi = II Ge, 11~ 

it follows from the Cauchy-Schwarz inequality that 

I z 
i>N 

Cittbji 
I 

(3.1) 

and moreover 

z c;(t) < E(N), 
i > N 

i F,$i = xj(N) 

with e(N)+ 0 as N-+ ~4. 
Let x(N) = max l~jjahi(Xj(N). Then it follows from (3.1) that 

Iaj(t)16E1(N),jz 1, . . .) NY EI(N)=V/E(N)X(N) 

Thus, the system of the first N exact equations (2.3) and the system of N approximate linear 
differential equations with constant coefficients differ by a certain column vector cr(t) = [(Y, . . . 
aNIf, which is bounded as a function of t. Let us assume that all the real parts of the eigenvalues of 
the matrix AN of system (2.4) are negative, i.e. the approximate system is stable with respect to 
persistent perturbations. Then 

4(N,e1) = SUP 
B 

SUP exP (TAN) i eXP(-TAN)a(T)d7 
t > to *II 

(3.2) 

exists, where the infimum is taken over the set B of smooth vector-valued functions a(t) that are 
bounded as functions of t by the positive number el (that is, ) ai 1 d ~1, j = 1, . . . , N). 

Let K(N, q) denote the maximum component of the N-vector K~. This quantity K(N, l 1) 

characterizes the transfer properties of the approximate system (2.4). For simplicity, we shall 
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estimate K(N, q) on the assumption that all the eigenvalues A, (i = 1, . N) ot Av are smlplc. in 
that case, RN [the phase space of system (2.4)] splits as a direct sum of one- and two-dimensional 
invariant subspaces for AN, and there is a real transformation of variables u = qy’c, that brings 
system (2.4) to canonical form (see, e.g. [8]). In the new variables u, the matrix of the linear svstcm 
has along its principal diagonal either real eigenvalues or 2 by 2 blocks 

[corresponding to eigenvahres of the form /I& +-i& (/3, <(I)]. It is now quite easy to estimate K tw 

each subsystem. The result. obtained by combining the results for the entire system is 

K(N, El) < &i"E@K2. K z = max I tiii I rnax / \I/“’ I/min I Re h, j 
Li iJ I 

( 3 .3 / 

where I.,$ and 4” (i, j = 1, . , N) are the elements of the matrices v’ and q ‘. respectively. 
Note that q is the matrix of the transformation to a coordinate system consistmg of eigenvectork 

of the operator AN (if they are complex, take their real and imaginary parts scparatcly). If on<% 
requires these to be unit vectors, then max,, / &, j = I. 

The estimation of K when some eigenvalues are multiple is similar. 
The system consisting of the first N exact equations (2.3) is obtained by perturbing the 

approximate system (2.4) by a certain bounded vector <w(t). Since all the eigenvalues of ATV arc 
negative, it follows from the formula for the general solution of an inhomogeneous linear equation 
[X] and from (3.2) that the solutions of the exact and approximate systems in this case differ by at 
most K(N, E, (IV)). i.e. 

ix,(I)--cl”(I)jS::(hi, Ed) (;- I,. “~ 1%‘) 

COnSeqUently, if K(N, q(N) )---+(I as N + x, then also cl--$ (j = 1, . . N) uniformly in I. 
We will now estimate the distance betwecnf(x, f) and .f’” fx. t). We wili use the Parseval cqualily 

ft implies that, under all our assumptions 

II(f’---f*)/~* II * < NK’(N, f,(N)) f E(N) 

If we require in addition that NK’ (N, ~1 (N I)- 0 as N-+ x. then also I/(f’-f’.“)/j_~ /j +O as ,Y-, :c 
We have thus proved the following theorem. 

Theorem 1. Suppose that the initial SDS ( 1.1) satisfies the following conditions: 
1. f(x, t)/p, (x) E L,(X, p) and the Fourier series of this function converges to it uniformly in I. 
2. Gej (x) f L2 (X, /LcL) for ali j. 
3. All the real parts of the eigenvalues of the matrix AN of the approximate system (3~4) arc 

negative for any sufficiently large N. 
4. limN_, K(N, E!(N)) = 0. 

Then limv_.,, icj(t) - c/* (t) / = 0 (.i = 1, , . . , N) uniformly in t (i2t(l). 
If we add the next condition. 
5. 1imN ,,,NK*(N, 6, (N)) = 0 then limN 1X II[f’(x. f) -J“(x, f)]/wr (x)11 = 0 uniformly in t. 
Considering inequality (3.3), we can replace conditions 4 and S. respectively, b> 

A sufficient condition for these conditions to hold is that the ‘“contractive” properties of the 

operator AiV and the rate of decrease of the expansion coefficients of ,f;f~~r as N increases havt3 
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suppressed the effect of the increasing dimension of the system (which is a power of N) and, as 
follows from (3,3), certain effects due to the orientation in RN of the eigenfactors of AN. 

The condition for the Fourier series of ftp to be uniformly convergent implies that 

This condition may be weakened. If 

as N-+co t 
0 

FF<, i~Nc;@> + Q 

then al1 our conclusions remain true for t E [to, Tj. 
The theorem will also remain true if the sequence of natural numbers N is replaced by a 

subsequence Nj; the conclusion will then hold as j+ a. 
We will now discuss some aspects of the practical application of Theorem 1. condition 2 can be 

verified directly; the same holds for the estimation of x(N). The term e(N) depends on the 
smoothness of f(x, t), which in turn depends on the smoothness of the coefficients of the initial 
system (see Sec. 5 below). Some difficulties may be involved in (analytically) checking conditions 
3-5. In practice, however, there is no need to investigate the limits (3.4) and the eigenvalues of AN 
as N-+ 00. That task may be assigned to the computer for suf~ci~nt~y large N. This also implies the 
necessary conclusions as to the exactness of the approximation of ci by cf* (j = 1, . . . , N) and off by 

f*- 
Even if conditions 3-5 of the theorem are violated from some N’ on, the difference between the 

exact and approximate coefficients Cj (j = 1, . . . , N) and between f and f*, considered for N< N’, 
Will not exceed K and NK’ + E, respectively. 

Thus, as the order of approximation N is increased (when the conditions of the theorem are 
satisfied), our method may be used to obtain the Fourier coefficients of the one-dimensional 
density, with an error that tends to zero as N* ~0. Under these conditionsf*/p, will converge in the 
Lz (X, p)-metric to the exact solution flpi . It follows, finally, that SaJ’*dpO-+ Jaf& for any domain 
A, uniformly in A. 

The problem of determining a function given the approximate values of its Fourier coefficients is 
ill-posed (see, for example, [9]>. The convergence (whether pointwise or uniform) may be improved 
by using Tikhonov’s method of regularization. 

The software implementation of the method is relatively easy, thanks to the linearity of system (2.4). As a 
result, the computation of the coefficients Cj of the steady-state soiutian reduces to determining the inverse of 
the matrix AGland multiplying it by the (column) vector of free terms of system (2.4). As to the evaluation of 
the Cj(t)S as functions of time, this can be done either by solving Eqs (2.4) by computer or, relying on available 
explicit formulae for solving systems of linear ordinary differentinl equations, setting up an analytical 
expression for exp(-ANt) and then doing the same for the quasi-moments c/(t) and densityf*(x, t). If x is a 
multi-dimensional vector, one can use the known CT (t) to obtain an approximate expression for the density of 
some of its components. As the formulae defining f*(x, t) are rather cumbersome, it is more convenient to 
employ standard graphics software in order to plot the results in terms of the input data. To that end, one must 
first create an array of values of the density f* for a ~o~es~onding array of x values. 

4. EXAMPLE 

Let us consider the motion of a two-dimensional mathematical pendulum with a smooth potential II(p) 
depending on its position q(mod2r), on the assumption that the pendulum is under the action of a moment due 
to viscous friction and a certain random moment. This is the problem that must be solved, for example, if one is 
considering an unbalanced gyroscope in a Cardan suspension taking into account the moment due to viscous 
friction and a random moment, both moments acting along the internal axis of the Cardan suspension [lo]. We 
shall pay particular attention to the motion of the pendulum in the uniform field of gravity. 

The phase space of the system is a manifold X = R x S, the local coordinates on X are the angIe rp and the 
momentum. We shah assume that the random moment can be written in the form b(~~V(~~, where V(r) is a 
vector of steady white noise with intensity matrix ZJ, b(rp) is a matrix, and o(p) = ~~T(dim~ = I) is a smooth 



function of cp. Then the equations of motion in dimensionless variables are as follows (6 denotes the coefticrent 
of friction) 

u?*=p, p’ = --an/a9 - ~cp + b(q)v(r) b.ii 

These equations define a diffusion process on X. controlled by the operator 

We shah analyse this process using the above algorithm. We lirst define AzfX, p) in this cast. Since ,Y is the 
direct product of the circle S and the real line K, wz can use the theorem about orthogonal systems in products 

171. As a measure pP on S we take the “‘normalized” Lebesgue measure dkV = dql(27r). and as an orthonormai 
basis the functions 1. \/3cosp, V?sinq, V?coa7q, \‘?sin+. 

The measure on R will be the finite measure ,u,> such that 

where y>O is a parameter, chosen from considerations of convenience: the orthonormal basis will be rhe 
sequence of Hermite polyn(~mials 

H, (P) = 11 H, (LO = P/XI?, H, (P) = (P’ - -r)/(Ji-4, . . 

H&J) = (-1)” JT ew (p”l(W)Id”/d# exp(-P/(2rf)l/~ 

Then, by the above-mentioned theorem, the system of functions H,,,( I’) \/‘5 ~. _smnq. H,,,(p) \;?costrcp (where /PI. 
II are non-negative integers) is a complete orthonormnl system in lA1(X. p). p = pV@ p,, 

The one-dimensional densityd(cp, p, t) of the stochastic process q(f). 17 (f ) admits of the expansion 

The coefficients of this expansion are given by 

a,, = MH, (~1 &sin w, h,, = MH,( p) flcos r&o. d,,, = MH,(p) 

Confining our attention in (4.2) to index values 0. =Z r>l c I%‘, 0 G !I s A’ (rectangular summation) and solving the 

resulting system of ordinary differential equations (2.4) [of order N(2iZ’+ 3)]. say by ~omp~iterized methods, 

we obtain an approximate expression for the one-dimensional density f‘(q,~, t). As a byproduct of this 

procedure we obtain the coefficient5 II,,,, . h,,,,, d,,, (quasi-moments) as functions of time. and then all the 

moments c,,~ = MpmefnV of orders up to and including N. 

Let us verify the assumptiotls of the theorem. Since the right-hand sides of Eys (4.1) are p[~iyllorniais in f7 and 

the specific measure FL,, has been chosen, the condition CIA, = OH (p) I,‘jsin ttic (or 

GH,,,(p)~cosncp)~L~(X,~_~) is satisfied, as (A; is a finite linear combination ‘of HeAte polynomials. A 

direct check shows that x(N) - N’. In Sec. 5 we shall show that condition (3.5) is satisfied (for an arbitrary long 

but finite interval of time) if K?(N) increases at most as rapidly as a power of N and II(q) and crfqs) are 

sufficiently smooth functions of +o. 
Continuing, we confine ourselves to the motion of a pendulum in a uniform gravitational held under 

conditions of translational vibration in the plane of the pendulum. Let the vector of vibro-accelerations be ii 

vector of normal steady white noise V = [If, , VI]’ with intensity matrix v c= iv,, ] (i. j = 1 7). Then I I and o dt’c 

analytic function of 9. Equations (3. I ) will be 

9’ = P, p’=--sin9--Ep+V,sijl9~ V,cos9 

The infinite ~denumerable) system of ordinary ~~iffer~ntiai equations (2.3) for the unknown expansron 

coefficients a,,,, , b,,,,, , d,,, is 

nt?l?l . = -meam, + + J-- F (-.bm--lp--l+2n~bm--1,,+b,-l,,+l)+n~b,+l,.c 

+ Jrn~ 
4r 

[u12(b,_2, n+2 - b,-2, ,,-2) + v (%-z,n+z +n~--2,~--2)~ (4.3) 

&bn = -m&,, - Jj- J-- T y (-am-l,n-l + Warn-1, n+am_~,* + tf-fl~am+l,.+ 
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+ +n(m - 1) 

eu 
[“12(-“m-2, n+2 + Qm-2, n-2) + v-‘@m-2, n+2 + bm-2, n-231 

d’,= -med,,, - 
m 

J- 
&iG=il 

2rarn-l,l + 2fi (-v12a,-2,2 + v-b-2,2) 

Confining our treatment of system (4.3) to rn and pa such that O~rn, nSiV and solving the resulting finite 
system of linear differential equations, we obtain an approximate expression for the density and approximate 
values for the quasi-moments. 

One should note that Khas’minskii’s theorem implies the existence of a limiting steady-state solution, i.e. the 
infinite system of exact equations (4.3) has an asymptotically stable point. Therefore all the coefficients a,,,,, , 
b mnr d, will ultimately tend to definite constant values, which determine the density f of the steady-state 
solution. For any finite closure, the trace of the matrix of the linear system thus obtained will be negative (it is 
equal to - eN(N f 1)(2N + 1)/2). But this means that the phase flow of the equations reduces volumes. 

Numerical experiments on a personal computer, using the scientific software package NALIB (developed at 
the Institute of Informatics Problems of the Academy of Science of the U.S.S.R.) have shown that when N = 
2 . .’ 6 (for definite values of E, y, V) all the real parts of the eigenvalues of AN are negative (all the 
eig&rvalues are simple) and K*(N) depends only very slightly on N. All imputations were repeated for two 
other measures pp with densities 1 and exp(p2/(2&)), respectively (the orthogonal basis on the real line in both 
cases consisted of the Hermite functions), guaranteeing the validity of the conditions f/p1 E L2(X, p) and 
dk+‘(f/pl)l~(ok~p’E L2(X, p). Since the results were the same, these cases are not discussed here. 

Figure 1 shows the form of the one-dimensional density fst of the steady-state distribution in the cube 

ClVl~K IPlClO, 0 6 ~~0.5)) in the case (F = y = 1, N = 4, and ull = 3, u22 = 1, plz = 0.1. An interesting 
consequence of the fact that pll # 592 and 29 # 0 is that the distribution is multimodal. The modes correspond to 
the points cp = rn~- (m = 0, tl, . . .). Thus, owing to the inhomogeneity of the vibration, there is a higher 
probabihty for the pendulum to be in its vertical position p = r. For comparison, Fig. 2 shows the form of the 
one-dimensional steady-state solution in the case E = y = 1, v ii = vz2 = 2 [see formula (4.4)]. For any p, the 
distribution on the circle S = {cp} is in this case unimodal (cp = 0 is the mode, Q = 7r the antimode Ill]). 

Figure 3 shows the probability density of the angle rp in the case E = y = 1, N = 4, ull = uz2 = 2). The solid 
curve represents the steady-state solution, and the dashed curve a transient at the time t = 1%. The initial 
density was taken to be the functioned = [l +sin(rg+ ?r/3)‘j/(Zrr). 

Table 1 lists the onset time T of steady behaviour, for a few values of the parameters of the problem. 
The initial density was taken to be fo(cp, p) = fo(cp)exp(-p2/2)lV’2n. 
Some information may be derived by considering only the “first” approximation, when the only coefficients 

FIG. 1 



taken into XCOUnt from (4.2) are ff[$$ , hll , tq)t t nj t3 dl _ Then sptent (2.3) indudes five equations. which split 
into three ~~d~~endent subsystems: for tlnl, b 1 I t for ;7 ill . ill 1 and for di . The characteristic values of the firsf two 
subsystems are identical: h,,z = -d25 V’E’M- y, while the characteristic value of the third is -c. Hence. in 
particular, it is evident that the onset of steady behaviour will occur earlier if l 2/4 - y<O, i.e. L)> r-‘/2. This is in 
good agreement with the data of numerical experiments (see above). 

One more property of system (4.3) is worth noticing. If viz = 0, it spIits into tw:w11 inde~~~~nt subsystems. 
The first includes am,* for even m and 6,, for odd m. The second inctudcs u,, for odd m and ir,,, for even PG. 

We notice that when the steady-state density ,f;# is known, our method yields a r~pres~ntat~~~n of the 
steady-state vah~es of the quasi-moments ci = f,+&Lir_tit as solutions of an infinite system of linear atgebraic 
equations [one should set ci = 0 in (Z.Z)j. Sometimes this solution may be found in the form of continued 
fractions. In such cases one obtains exact, rapidly convergent formulae for the integrals JXri.f,,CIpCr, though it 
may be difficult to evaluate these integrals directly. 

‘To illustrate this, let us consider the example of a ~endu~nn~ in a h~mogen~uus gravitational field, when 
X:1,? = 0, PI J = ?+ = v. In this case, the exact express&s for the density of the steady process cp{b). [z(r) {in the 
narrow sense) is well known 

fSt(p,P) = if exp(-y+ (p* 12 - cos $$I. tr = Cmst, y = v/(h) j&J’\ 

It folfowvs from this formula that C,O and p itre stat~st~~~~y ~nd~~~~d~nt in the Ximit. fhc rno~~e~~~rn p is 
normally distributed with zero mean and variance y. while the probability density of the angle C,C (the density of 
the measure on the unit circle) is given by&(p) := Hi exp{y’-‘eos+). H1 = const. 
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TABLE 1 

E 1 1 1 2 4 0.25 0.5 1 2 

Vll 2 4 8 2 2 2 3 3 3 

v12 0 0 0 0 0 0 0.1 0.1 0.1 

v22 2 4 8 2 2 2 1 1 1 

Y 1 2 4 0.5 0.25 16 2 1 0.5 

T 11.5 12.5 13 28.5 35 42 26.5 15 30 

The numbers 

cn =; e’“?, (cphirp = bon + iuon (n = 0, il, ?2, . . . ) 
-77 

are known as the power moments of the measure p(& = fr (cp)dq) or trigonometric moments. The sequence c, 
is also called the characteristic function of cp [ll]. 

The steady-state values of the coefficients amn, b,,, d, [the equilibrium position of system (4.3)] may be 
determined. The only non-zero coefficients are bon, for which we obtain the following system of linear algebraic 
equations 

-Ji-+2rb,, +b,, =0, . . . . -bo, n-1 + WbO, n + b0, n+l = 0, * . - (4.5) 

Solutions of these equations are found as continued fractions, yielding expressions for the steady-state values 
of the trigonometric moments 

2n 

Mcos9 = $fi(~p)cosIpdlp=b,,/~1/2r+1/4~+1/6~+... 
0 

2n 

Mcos2~= $ f,(Ip)cos2lpdlp= b,,lfl= l/l+ 2(27)* +2-y/67+ l/87+ l/l@r+. . . 
0 

Although the approximate results described above are guaranteed to be close to the exact solution over a 
finite time interval (which will be longer, the greater N), the case of v12 = 0, vrr = 92 = vdemonstrates that the 
approximation may remain good over an infinite time interval. Here the convergence of the approximate value 
of the steady-state fz to its exact counterpart fs, as N increases is as rapid as for the continued fractions bol and 

bo2. 

5. CONCLUSION 

We will now consider the function F(cp, p, t) =f(cp, p, r)/(V’& (p)) E L;?(X, CL) and its Fourier series 

R9, P. 0 - : ~rnW[drn + .; 1 (am,, 
m=O 

sinnlp+b,,cosnIp)] (d, = 1) (5.1) 

Let us estimate the remainder l (N, t) of the Parseval series for F. Let F have k continuous derivatives with 
respect to cp, and r continuous derivatives with respect top. Differentiating the series (5.1) successively k times 
with respect to cp, and r times with respect to p, and comparing the coefficients of the series thus obtained 

ak+F 
7 - g 

a9 ap m=O 
Hm(p)(d$ + nE 1 (ax,, sin nip + b&, cosnlp)l 

with those of the original series, we see that, depending on the parity of k, one has either 

a:, = *n’am+r,nR, b&= *n’bm+r, nR d; = d, +,R 

R=Z’(m+r)(m+r-l)... (m+l) 

01 
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a& = ~~bm+r,~R, b&, = k 
+n am+r,n R 

Let us assume that ski’ Flacpki)p’E L2(X, p) for any t. Then. using the Cauchy-Schwarz inequality (as m 
[ 121) for series, we obtain 

N 
E(N, rf = z : hm,+ 5 (d&+ : hm,) = 

m=O n=N+l m=N+t ?I=1 

=2 -2~ [ ,t r n =; + , n -2kWn&m, + m _; + IM,,,(4i~, + .f ,n-2ks,,,,,)l 4 

n-4k:( ; c” 
iw?,)“i 2 d*4 )“+ 

m=r ?l=N+i m=r n=N+1 m=N+l m=N+I m-r 

+( 5 MA ; n-4k)‘( p = const 
m=N+l n=l 

h mn =aLn + b&p 
.2 

gmn =am--r n +bL2 
m-r, ?I’ 

Mm = [m(m - 1) . . . (m - r + i)] -z 

where E*(N, I) is an estimate for the remainder term (in the rectangular summation method assumed here) of 
the Parseval series of ak+rFl&pk ap’. 

If sup,~*(N, t)-+O as N-+ M. i.e. the series (5.1) of the function 3k+r Ffacpk dp’ is uniformly convergent, the 
series (5.1) for F is also uniformly convergent and the required estimate is E(N) -N 2min(k.r)+1/~. However, this 

condition is not easy to verify, so we limit ourselves to as long but finite a time interval [lo, 7’1 as required. Let 
sup e*w,r1 =11(N). 

WqJl 

Over this interval, then, we have E(N)+~N -2m’n(*~ri+“2 Condition (3.5) (translated into the vector indexing 
adopted in this section) will be 

lim [N(2N+ ~)]‘K:(N)N -2min(k, r) + QN) = O 

N-+W 
cr.‘) - 

consequently, if K:X increases as N--+m at most as rapidly as N~~“‘(~,~)-“‘-~‘~. then c~3nditjon f5.3) is 
satisfied. 

In conclusion, we would like to point out that these results may be generalized to the case in which the vector 
of random forces F may be written as F = b(q) r(t). where r(t) E R” is a vector of random functions satisfying 
the shaping filter equation 

= * = a (x) + b(n)V (t) 

where V(t) (dimV = 1) is a vector of normally distributed white noise with intensity matrix V. In that case 
X = T*Q x R’l, x = [q’p’n]. 

The author would like to thank E. R. Korepanov for assistance in carrying out the computations. 
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